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Abstract

An approximate analytical solution for the temperature distribution and interface motion is determined for the freezing of blood-perfused tissue
around a cylindrical cryoprobe. The solution is based on an improved quasi-steady model in which assumed temperature profiles in the frozen
and unfrozen tissue are used to determine the interface motion. The approximate solution satisfies all temperature boundary conditions as well as
the transient heat equations at the interface. Due to blood perfusion in the unfrozen tissue, a steady state is reached where the interface becomes
stationary. The solution converges to the exact steady state interface location. Improvement over the quasi-steady solution and the accuracy of the
present theory are verified by comparison with numerical solutions for the limiting case of zero blood perfusion and metabolic heat production.
Results show that a typical quasi-steady error of 73% is reduced to 8% using the present theory. Parametric charts are presented to evaluate the
effect of the governing parameters on interface location.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

A major interest in the application of cryoprobes is the de-
termination of the moving frozen front position. Problems in-
volving phase change are encountered in a wide range of appli-
cations such as food preservation, energy storage and geology.
Although phase change problems have been analyzed during
the last century and a half, there are very few exact solutions [1–
4]. The mathematical difficulty is traced to the non-linearity of
the interface energy balance condition. Because of the added
complexity of blood perfusion, metabolic heat production and
vascular architecture in tissue freezing, solutions are commonly
based on numerical techniques [5–10] or approximate analyt-
ical methods [11–16]. A common approximation is based on
the quasi-steady assumption [16–20]. In this model the math-
ematical problem is vastly simplified by neglecting the tran-
sient terms in the governing heat equations. The Stefan number,
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which is the ratio of sensible to latent heat, is used as a criterion
for the applicability of the quasi-steady model. Results based
on this model are valid for small Stefan numbers compared
to unity. Although the quasi-steady model is useful in pro-
viding approximate solutions, it has severe inherent disadvan-
tages since it does not account for the effect of Stefan number
and thermal diffusivity. Consequently, the method is not useful
for performing comprehensive parametric studies. In a recently
published paper, Lin and Zheng [20] partially address this issue
by approximately accounting for the sensible heat to improve
quasi-steady solutions to freezing of non-biological medium.
Their solution is based on an assumed temperature profile in the
frozen region. The assumed profile makes use of Stefan’s exact
Cartesian solution to freezing of a semi-infinite non-biological
material. They applied this approach to three one-dimensional
problems involving planar, cylindrical and spherical geome-
tries. In all cases the non-biological material is assumed to be
initially at the fusion temperature. Based on this assumption
the unfrozen region plays no role in the solution. Compari-
son with exact results showed excellent improvement over the
quasi-steady solutions.
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Nomenclature

cs specific heat
k thermal conductivity of unfrozen tissue
L latent heat of fusion
qm volumetric metabolic heat production rate
r cylindrical coordinate
ro radius of cylindrical probe
St Stefan number, defined in (3)
t time
T temperature, unfrozen tissue
wb volumetric blood perfusion rate per unit tissue vol-

ume

Subscript

a0 arterial blood supply temperature
b blood
f fusion
i interface
in initial

o surface
s solid phase

Superscript

n exponent in the assumed unfrozen tissue tempera-
ture

Greek

α thermal diffusivity
β blood perfusion parameter, defined in (3)
γ metabolic heat production parameter, defined in (3)
κ conductivity-temperature ratio parameter, defined

in (11)
θ dimensionless temperature, defined in (3)
ρb blood density
τ dimensionless time, defined in (3)
ξ dimensionless distance, defined in (3)
ξi(∞) dimensionless steady state interface position
In this paper we examine freezing of a blood-perfused tis-
sue around a cylindrical probe. The method used in the anal-
ysis of planar and spherical probes [15] is extended to tissue
freezing around cylindrical probes. Tissue heat transfer analy-
sis requires the use of an appropriate bioheat equation. One of
the earliest equations was formulated and applied by Pennes
in 1948 [21]. In this equation blood effect is modeled as a lo-
cal, tissue temperature-dependent, heat source or sink. Because
of the simplicity and reasonable accuracy under certain con-
ditions, Pennes’ bioheat equation has been extensively used in
heat transfer analysis of biological tissues under thawing and
freezing conditions. Although the method of Lin and Zheng
cannot be applied to this problem, a different approach is in-
troduced to improve the accuracy of the quasi-steady approxi-
mation in both the frozen and unfrozen regions. Solutions to the
temperature distribution and interface motion account for blood
perfusion, metabolic heat generation, arterial supply tempera-
ture, Stefan number and thermal diffusivity effects.

2. Analysis

2.1. Problem statement and formulation

We consider one-dimensional freezing of tissue around a
cylindrical cryosurgical probe of radius ro shown in Fig. 1. The
tissue is assumed to undergo phase transformation at a discrete
fusion temperature Tf . The probe is embedded in an infinite
tissue initially at uniform temperature Tin. The surface of the
probe is suddenly maintained at uniform temperature To < Tf .
Metabolic heat is generated throughout the unfrozen tissue at
a constant volumetric rate qm. Blood at the arterial temperature
Ta0 is supplied to the tissue at a uniform volumetric rate per unit
tissue volume, wb . Tissue freezing commences instantaneously
at r = ro and propagates outwards in the radial direction.
Fig. 1. Cross section of cylindrical probe.

2.2. Governing equations

Since this is a two-phase problem, an appropriate heat equa-
tion must be formulated for each phase. Noting that metabolic
activity and blood perfusion cease in frozen tissue, the classi-
cal heat conduction equation is applicable in this region. For
the unfrozen tissue we use Pennes’ bioheat equation [21]. Ex-
pressed in dimensionless form, the governing heat equations are
given by

1

ξ

∂

∂ξ

[
ξ
∂θs

∂ξ

]
= St

∂θs

∂τ
, 1 � ξ � ξi (1)

and
1

ξ

∂

∂ξ

[
ξ
∂θ

∂ξ

]
− βθ − γ = St

αs

α

∂θ

∂τ
, ξ � ξi (2)

The subscript s refers to the solid phase (frozen tissue), α is
thermal diffusivity and St is the Stefan number. The dimension-
less variables and parameters are defined as

θs = Ts − To
, θ = T − Ta0
Tf − To Tf − Ta0
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ξ = r

ro
, τ = St

αs

r2
o

t

β = ρbcbwbr
2
o

k
, γ = qmr2

o

k(Ta0 − Tf )

St = cs(Tf − To)

L (3)

Subscript b refers to blood, c is specific heat and L is the latent
heat of fusion.

2.3. Boundary and initial conditions

The dimensionless form of the boundary conditions are

θs(1, τ ) = 0 (4)

θs(ξi, τ ) = 1 (5)

θ(ξi, τ ) = 1 (6)

θ(∞, τ ) = −γ /β (7)

The initial conditions are

θ(ξ,0) = −γ /β (8)

ξi(0) = 1 (9)

Conservation of energy at the interface gives

dξi

dτ
= ∂θs(ξi, τ )

∂ξ
+ κ

∂θ(ξi, τ )

∂ξ
(10)

where κ is defined as

κ = k(Ta0 − Tf )

ks(Tf − To)
(11)

Examination of the dimensionless equations shows that the
problem is governed by five parameters: diffusivity ratio αs/α,
blood perfusion β , metabolic heat production γ , conductivity-
temperature ratio κ , and Stefan number St.

2.4. Simplified model: quasi-steady approximation [16]

From the definition of the Stefan number in (3), it follows
that for a small Stefan number, interface motion is dominated by
the latent heat. Consequently, the interface moves slowly such
that the instantaneous temperature distribution corresponds to
the steady state. Based on this argument the transient terms in
(1) and (2) are neglected. The solution to the resulting equa-
tions, subject to boundary conditions (4)–(7), is detailed in the
literature [16]. The temperature distribution in the frozen and
unfrozen regions for this model is given by

θs = ln ξ

ln ξi

(12)

and

θ =
(

1 + γ

β

)
K0(

√
βξ)

K0(
√

βξi)
− γ

β
(13)

Substituting (12) and (13) into (10) gives

dξi = 1 − κ
√

β

(
1 + γ

)
K1(

√
βξi)√ (14)
dτ ξi ln ξi β K0( βξi)
Numerical integration of (14), using initial condition (9), gives
the interface location ξi(τ ). It is instructive to note that the
solution is independent of Stefan number and the diffusivity pa-
rameter αs/α. This is typical of all quasi-steady solutions.

2.5. Improved quasi-steady solution

We seek to improve the accuracy of the quasi-steady so-
lution, eliminate its limitation to small Stefan’s numbers and
include the effect the diffusivity parameter αs/α. Since Stefan
solution does not apply to metabolic heat production in a blood
perfused cylindrical tissue, the method of Lin and Zheng cannot
be applied to this case. A unique feature of the tissue prob-
lem is the existence of a steady state condition corresponding
to τ → ∞. This is not the case with the Stefan and Neumann
problems. The exact steady state tissue temperature distribution
and interface location can be easily determined.

To improve the quasi-steady solution of the tissue problem, a
new approach is developed that does not require the use of exact
solutions to related problems. Rather than solving the quasi-
steady equations, appropriate temperature profiles are assumed
for the frozen and unfrozen phases. The assumed profiles sat-
isfy all boundary conditions as well as the two transient heat
equations, (1) and (2), at the moving interface. In addition, the
assumed profiles insure that the steady state interface location
converges to the exact solution.

2.5.1. Assumed temperature profiles
The following profile is assumed in the frozen finite tissue

θs(ξ, τ ) = 1 + a1

[
ξ

ξi

− 1

]
+ a2

[
ξ

ξi

− 1

]2

(15)

The assumed profile in the semi-infinite unfrozen tissue is an
exponential of the form

θ(ξi, τ ) = b0 + b1 exp

[
−b2

ξn

ξn
i

]
(16)

These profiles are dependent on seven unknown factors: a0, a1,

a2, b0, b1, b2 and n. The exponent n is assumed constant and
the remaining coefficients may be constants or functions of
ξi(τ ). In addition to the four boundary conditions on θs and θ ,
three additional conditions are needed. Two conditions are for-
mulated based on the invariance of interface temperature, the
satisfaction of heat equations (1) and (2) at the interface, and
conservation of energy (10) at the interface ξ = ξi . Since in-
terface temperature Tf remains constant at all times, it follows
that

dθs(ξi, τ ) = ∂θs(ξi, τ )

∂ξ
dξi + ∂θs(ξi, τ )

∂τ
dτ = 0

Solving the above for dξi

dτ
and using (1) to eliminate ∂θs(ξi ,τ )

∂τ
yields

dξi

dτ
= −

∂2θs (ξi ,τ )

∂ξ2 + 1
ξi

∂θs (ξi ,τ )
∂ξ

St ∂θs(ξi ,τ )
∂ξ

(17)

Substituting (17) into (10) gives
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[
∂θs(ξi, τ )

∂ξ

]2

+ κ
∂θs(ξi, τ )

∂ξ

∂θ(ξi, τ )

∂ξ

+ 1

St

[
∂2θs(ξi, τ )

∂ξ2
+ 1

ξi

∂θs(ξi, τ )

∂ξ

]
= 0 (18)

Similarly, constancy of the temperature of the unfrozen region
at the interface, heat equation (2) and interface energy equation
(10) give

∂θs(ξi, τ )

∂ξ

∂θ(ξi, τ )

∂ξ
+ κ

[
∂θ(ξi, τ )

∂ξ

]2

+ 1

St

α

αs

[
∂2θ(ξi, τ )

∂ξ2
+ 1

ξi

∂θ(ξi, τ )

∂ξ
− β − γ

]
= 0 (19)

A third condition is based on the interface steady state solution
ξi = ξi(∞) obtained by setting dξi/dt = 0 in (10) to obtain

∂θs(ξi,∞)

∂ξ
+ κ

∂θ(ξi,∞)

∂ξ
= 0 (20)

Application of boundary conditions (4)–(7) gives

a0 = 1, a2 = −1 + a1(ξ
−1
l − 1)

(ξ−1
i − 1)2

b0 = −γ

β
, b1 =

[
1 + γ

β

]
expb2

The assumed profiles (15) and (16) become

θs(ξ, τ ) = 1 + a1
(
ξ−1
i ξ − 1

)

− [
1 + a1

(
ξ−1
i − 1

)] (ξ − ξi)
2

(1 − ξi)2
(21)

and

θ(ξ, τ ) = −γ

β
+ γ + β

β
exp

(
b2 − b2ξ

−n
i ξn

)
(22)

Application of (21) and (22) to conditions (18)–(20) gives three
equations for a1, b2 and n:

a2
1 − κ

[
1 + γ

β

]
na1b2 + 1

St

[
a1 − 2

1 + a1(ξ
−1
i − 1)

(ξ−1
i − 1)2

]
= 0

(23)

a1 − κ

[
1 + γ

β

]
nb2 + 1

St

α

αs

[
n(1 − b2) + βξ2

i

nb2

]
= 0 (24)

and

n = a1(∞)

κ[1 + γ /β]b2(∞)
(25)

Evaluating (23) and (24) at τ = ∞ and combining the result-
ing equations with (25) gives three equations for a1(∞), b2(∞)

and n. The solution to the three equations gives the constant n

in terms of steady state interface location ξi(∞)

n = 2

κ[1 + γ /β]
1

[ξ−1
i (∞) − 1][ξ−1

i (∞) − 3]
− βκ

[
1 + γ

]
ξ2
i (∞)

[
ξ−1
i (∞) − 1

][
ξ−1
i (∞) − 3

]
(26)
2 β
The exact steady state interface location ξi(∞) is determined
by setting dξi/dt = 0 in (14)

1

ξi(∞)[ln ξi(∞)]
K0[√βξi(∞)]
K1[√βξi(∞)] = κ

√
β

(
1 + γ

β

)
. (27)

The solution to this transcendental equation gives ξi(∞).
With n determined, MATLAB is used to solve (23) and (24)

for a1 and b2 as functions of ξi .

2.5.2. Interface motion
To determine the interface location, assumed profiles (21)

and (22) are substituted into interface energy equation (10)

dξi

dτ
= a1

ξi

− κ

[
1 + γ

β

]
nb2

ξi

(28)

Solutions to a1(ξi) and b2(ξi) are substituted into (28) and the
resulting equation is integrated numerically using initial con-
dition (9) to give the transient solution to the interface loca-
tion.

3. Results and discussion

3.1. Solution accuracy

To evaluate the accuracy of the present theory, comparison is
made with the limiting case of freezing of non-biological ma-
terial with no blood perfusion or metabolic heat; β = γ = 0.
A numerical solution to this problem is available in the lit-
erature [22]. It should be noted that this special case has no
steady state interface solution. This is also true of the analo-
gous Neumann’s problem. This has an important consequence
on the assumed temperature profile in (16) where the exponent
n is introduced to satisfy the steady state interface condition.
Since the limiting case of β = γ = 0 has no steady state, we
set n = 1. Thus the improved quasi-steady state solution to this
limiting case is determined by setting β = γ = 0 and n = 1 in
(23) and (24) to obtain

a2
1 − κa1b2 + 1

St

[
a1 − 2

1 + a1(ξ
−1
i − 1)

(ξ−1
i − 1)2

]
= 0 (29)

and

a1 − κb2 + 1

St

α

αs

(1 − b2) = 0 (30)

Eqs. (29) and (30) can be solved analytically for a1(ξi) and
b2(ξi). The interface location ξi is determined from (28), which
simplifies to

dξi

dτ
= a1

ξi

− κ
b2

ξi

(31)

Numerical integration of (31) gives the improved quasi-steady
interface location for this limiting case. Note that in the defini-
tion of κ in (11) the blood supply temperature Ta0 is replaced
by the initial temperature Ti .

The improved solution of the present theory is compared
with the numerical solution in Fig. 2. Also shown is the quasi-
steady solution. The interface location ξi is plotted as a function
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Fig. 2. Comparison of ξ(τ ) with the numerical solution, β = γ = 0, α/αs = 1,
St = 1/3.

Fig. 3. Comparison of ξ(τ ) with the numerical solution, β = γ = 0, α/αs = 1,
St = 1.

of time for three values of the parameter κ for αs/α = 1 and
St = 1/3. The limiting case of κ = 0 corresponds to a material
which is initially at the freezing temperature. The error of the
present theory at τ = 1,2, and 3 for κ = 1.0 is 3.3%, 2.9% and
2.2%, respectively. The corresponding error of the quasi-steady
solution is 26.5%, 34.2% and 39.3%. Since the quasi-steady so-
lution for this case is independent of the parameter κ , its error
increases with increasing κ . For example, for κ = 1.5 the er-
rors become 36.6%, 48% and 55.7%. On the other hand, the
error of the present theory remains below 3%. Fig. 3 shows the
effect of increasing the Stefan number to 1.0. Since the quasi-
steady solution is independent of St, its accuracy deteriorates
with increasing Stefan number. For κ = 1.0 and τ = 3 the error
is 58%. The corresponding error of the present theory is 6.3%.
The parameter αs/α reflects the contribution of the unfrozen
tissue to interface motion. Fig. 4 gives the interface location for
Fig. 4. Comparison of ξ(τ ) with the numerical solution, β = γ = 0, α/αs = 2,
St = 1.

αs/α = 2. At κ = 1.0, St = 1.0 and τ = 3 the quasi-steady error
is 71% while the error of the present theory is 7.7%.

It should be emphasized that comparison with the numerical
solution is for the special case of β = γ = 0. As was pointed
out, this case has no steady state and thus, unlike application to
tissue freezing, convergence to the exact solution at large time is
not assured. In addition, typical values of κ for cryoprobes are
of order 0.15. This is much lower than the values used in the
numerical solution cases. Thus the conditions of the accuracy
test cases used in Figs. 2–4 contribute to larger errors not likely
to be encountered when the present theory is applied to tissue
freezing with blood perfusion and metabolic heat production.

3.2. Parametric studies

Having established the significant improvement of the
present theory over the quasi-steady model, we proceed to carry
out parametric study of the interface location. Tissue tempera-
ture and interface location are governed by five parameters:
αs/α, β , γ , κ , and the Stefan number St. However, it is instruc-
tive to examine the relationship between St and κ . From their
definitions in (3) and (11) we obtain

κ = k

ks

cs(Ta0 − Tf )

L
1

St
(32)

Except for Ta0, all quantities in the coefficient of St in (32) are
tissue properties. However, since the variation in blood supply
temperature Ta0 is relatively small, the effect of κ will not be
examined as an independent parameter.

Figs. 5–8 examine the effects of blood perfusion β , metabolic
heat γ , Stefan number St and diffusivity ratio αs/α on the in-
terface motion. Characteristic of these cases is the existence of
steady state interface location. Both quasi-steady and present
theory converge to the exact interface condition. For all cases
considered, increasing β results in a decrease in the steady state
interface location ξi(∞) as well as the time needed to approach
steady state. This follows from the fact that blood energy supply
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Fig. 5. Effect of β on interface location ξ(τ ) for α/αs = 1, γ = 0.05, κ = 0.15,
St = 0.5.

Fig. 6. Effect of β on interface location ξ(τ ) for α/αs = 1, γ = 0.1, κ = 0.15,
St = 0.5.

in the unfrozen tissue slows down interface motion and prevents
it from penetrating further into the tissue. Increasing γ has the
same effect, as indicated when Fig. 5 is compared with Fig. 6.
However, neither the Stefan number St nor the diffusivity ratio
αs/α has an effect on ξi(∞). On the other hand, κ does, as in-
dicated in (27). From the definition of κ in (11), a decrease in κ

can come about by an increase in the conductivity of the frozen
region ks . This results in an increase in heat removal from the
interface and a corresponding increase in its velocity and steady
state location ξi(∞). This is verified when Fig. 5 is compared
with Fig. 7. The effect of αs/α on interface location is not very
significant. This is evident when Fig. 7 (αs/α = 1) is compared
with Fig. 8 (αs/α = 10). For example, interface location ξi at
τ = 2000 decreases by 9.4% when αs/α is increased by a factor
of 10.
Fig. 7. Effect of β on interface location ξ(τ ) for α/αs = 1, γ = 0.05, κ =
0.0375, St = 2.

Fig. 8. Effect of β on interface location ξ(τ ) for α/αs = 10, γ = 0.05, κ =
0.0375, St = 2.

To compare the quasi-steady solution with the present the-
ory, we define the percent difference between the two solu-
tions, δ, as

δ = (ξi)quasi-steady − (ξi)present

(ξi)present
100 (33)

Examination of Figs. 5–8 shows that δ depends on the param-
eters αs/α,β, γ, κ , St and the variable τ . For the values of the
parameters considered in Figs. 5–8, the error ranges from neg-
ligible to 38%. Results show that δ increases with increasing
αs/α and St. However, it decreases as β andτare increased.

4. Conclusions

An improved quasi-steady solution for tissue solidification
around a cylindrical probe is presented. The solution accounts
for blood perfusion and metabolic heat production. The solution
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to the temperature distribution in the frozen and unfrozen tissue
satisfies all boundary conditions as well as the two heat equa-
tions at the interface. Steady state interface location is satisfied
exactly. Interface location was found to depend on five param-
eters: αs/α,β, γ, κ , and the Stefan number St. The accuracy of
the improved solution was evaluated by comparison with the
numerical solution to the limiting case of β = γ = 0. Signifi-
cant improvement over the quasi-steady solution was obtained.
For example, a typical quasi-steady error of 73% is reduced
to 8% using the present theory. Parametric studies show that
β,γ, κ , and the Stefan number St have significant effect on in-
terface location. However, the effect of αs/α is relatively small
even when it is increased by a factor of 10.
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